
)-A247 828

al Research Laboratory
gton. DC 20375-5000

NRL/NIR/5350.1-92-6953

Matrix Representation of Finite Fields

W. P. WARDLAW

Identification Systems Branch

Radar Division

March 12, 1992

DTIC
SMAR2 3 1992N

D

92-07240

Approved for public release; distribution unlimited



Form ApprovedREPORT DOCUMENTATION PAGE OMB No 0704-0188

Pub4ic reporiing burden for this collection of informatio -s es imated to average I hour er response, including the time for rlewe-n instrucltons searching e.stIng data vources.
gathering and maitainn the data ne.ded, and ,on g and renei the olec(ion of information send comments eirding this burden estimate or any other aspect of this
0o1fec1ron of information, includin S u on$ for reducin ih=$ burden to Washington Headquarters services. oirectOcate foe information Operations and Repois. t I1 Jet ferson

0avy higfhway. Suite 1204. Aringtol, VA 22202-4302. and to the Office of Management and Budget. Pitperwork R.educvin Profj cc (0704-0 188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 12, 1992 Interim Aug 91 - Sep 91
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Matrix Representation of Finite Fields

6211 N
6. AUTHOR(S) N0001991WXC15R

W. P. Wardlaw

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Research Laboratory
455,5 Overlook Avenue NRL/MR/5350.1-92-6953
Washington, DC 20375-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Naval Air Systems Command
Washington, DC 20361-1213

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION IAVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Finite fields (also called Galois Fields) have been studied since their introduction by Evariste Galois in
1832 and the publication of his work in 1846. In the last few decades, finite fields have become important to
information theory, coding theory, and cryptography.

This report presents a simple method for representing a finite field in terms of powers of a single matrix
over the integers modulo the characteristic of the field. The addition and multiplication in the field are immedi-
ately obtained as the results of ordinary matrix addition and multiplication. This representation called the
canonical cyclic representation, makes it easy to understand the field structure and to carry out computations in
the field.

14 SUBJECT TERMS 15 NUMBER OF PAGES
14

Finite fields Canonical cyclic representation 6 C

Matrix representation Cyclotomic polynomials

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Pr,198 eo b, ANSl iii 139 a
2 98 i 2



CONTENTS

INTRODUCTION .............................................. 1

REPRESENTATIONS OF FINITE FIELDS .............................. 1....

MATRIX REPRESENTATIONS ........................................ 3

CANONICAL CYCLIC REPRESENTATION ................................ 5

THE GENERAL CASE ............................................... 6

CYCLOTOMIC POLYNOMIALS ....................................... 7

EXAMPLES REVISITED .............................................. 8

CONCLUSION ..... .............................................. 10

REFERENCES ....... ..... ..................................... 10

L L

By

G. -

iiij



MATRIX REPRESENTATION OF FINITE FIELDS

INTRODUCTION

Finite fields have many applications to coding theory,

information theory, and cryptography. For this reason, it is

important to have understandable and efficient methods of

representing fin.te fields.

Most undergraduate texts in abstract algebra show how to

represent a finite fiel.d Fq over its prime field Fp by

clearly specifying its additive structure as a vector space or a

quotient ring of polynomials over Fp while leaving the

multiplicative structure hard to determine, or they explicitly

illustrate the cyclic structure of its multiplicative group

without clearly connecting it to the additive structure. In this

note we suggest a matrix representation which naturally and

simply displays both the multiplicative and the additive

structures of the field Fq (with q = pd) over its prime field

Fp. Although this representation is known (See [3, p. 65], for

example.), it does not appear to be widely used in abstract

algebra texts.

REPRESENTATIONS OF FINITE FIELDS

To illustrate these ideas, let us first consider the field

F8 of eight elements over its prime field F2. The additive

structure of F8 is that of the three dimensional vector space V

Manuscrnip apprved January 6. 1992.



= ((0 0 0), (1 0 0), (0 1 0), (0 0 1), (1 1 0), (1 0 1), (0 1 1),

(1 1 1)) over F2. However, it is not at all clear how to define

products of these vectors to get the multiplicative structure of

F8 ! It can be shown that extending the multiplication table

(1 0 0) (0 1 0) (0 0 1)

(1 0 0) (1 0 0) (0 1 0) (0 0 1)
(1)

(0 1 0) (0 1 0) (0 0 1) (1 1 0)

(0 0 1) (0 0 1) (1 1 0) (0 1 1)

for the basis B = ((1 0 0), (0 1 0), (0 0 1)} of V by biline-

arity gives the multiplicative structure of F8 , although a

direct proof would be tedious.

A more usual, as well as more useful, treatment (See [1, p.

171] or [3, p. 25, Thm. 1.6.1].) is to represent

(2) F8 = F2 [x]/(x
3 + x + 1)

as the ring of all polynomials over F2 modulo the third degree

irreducible polynomial x3 + x + 1. If we let a E F8 denote the

residue class of x modulo x3 + x + 1, we have a3 + a + 1 = 0.

Then it is easy to see (Recall that the characteristic is 2!)

that a3 = a + 1, a4 = a2 + a, a5 = a2 + a + 1, a6 = a2 + 1, and

a7  1, so

F8  ( t0, I, a, a2 , a3 , a4 , a5 , a6 }
(3) a

(3, , a, a2 , a + 1, a2  + a, aI + a + 1, a2  + 1).
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Thus, the multiplicative group F8 * = <a> of F8 is simply the

cyclic group of order 7 generated by a. The second formulation

in (3) makes the additive structure easy to see, although it

obscures the multiplicative structure a little. One can use the

abbreviated multiplication table

a a2

1 . a a2

(4)
a a a2  a +1

a2  a2  a + a2 + a

along with the distributative law to multiply elements of F8 .

(Comparing tables (1) and (4) is one fairly easy way to prove

that the multiplication given by table (1) satisfies the field

axioms.) Alternatively, one can use the relation a3 + a + 1 0

to multiply the elements given in the second formulation in (3).

This is the standard representation of a finite field, and it is

reasonably satisfactory. However, the transition from addition

to multiplication still leaves something to be desired.

MATRIX REPRESENTATIONS

If we pick any element b of the field F8 , left

multiplication by b is a linear transformation Lb on the

vector space V = F8 over F2. If we choose any basis B' of V

= F8 over F2 , we can find the matrix [Lb] = [Lb]B , of Lb

with respect to that basis. If we fix the basis B' and find

the matrix of each element of F8 in this way, it is clear that

the resulting set of matrices form a field isomorphic to F8 !
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Thus, each choice of basis gives a different matrix

representation of F8.

It appears at Oirst glance that we must have a multiplica-

tion table for the field before we can get the matrix representa-

tion. But there is a way to get around this difficulty.

Let

0 0 1
A 1 0 11

0 1 0]

be the companion matrix (See [1, p. 264], [2, pp. 229-230], or

[5, p. 201, Definition 5.2.16].) of the irreducible third degree

polynomial f(x) = x3 + x + 1 over the field F2 . Then f(A)

0, so the powers of A satisfy the relations satisfied by a

above; in particular, the matrix A generates the cyclic group

<A> of order 7 isomorphic to F8 *, and the ring of matrices

F2 [A] = {0, I, A, A2 , A3 , A4 , A 5 , A6}

is isomorphic to the field F8 . That was easy, wasn't it?

Indeed, a bit too easy, as we shall see. Consider now the

irreducible polynomial g(x) = x2 + 1 over the three element

field F3 . We see that its companion matrix B has multiplica-

tive order 4:

0 2 :2 0' o2 0 1, 4  : 101
B = i, B2 = , = ,, B =

i11 0 0 21 120i O 1

Not enough elements for F9 ! And the powers of B are not

closed under addition. Fortunately, there is a fairly simple
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cure: Adjoin the matrices 0, I + B, I + B3 , B + B2 , and B2 + B3

to the set of powers of B to obtain the ring F2 [B) of

matrices generated by B. Since g(B) = B2 + I = 0, it is clear

that the ring F2 [B] is isomorphic to the field F9. Thus, B

provides a matrix representation F2 [B] of the nine element

field, and we say that B is a generator of the field F9 .

CANONICAL CYCLIC REPRESENTATION

But we would like to have a cyclic generator of F9 ; that

is, a matrix M such that the multiplicative group F9 * of F9

is isomorphic to the cyclic group <M> generated by M. This,

too, is not terribly difficult. An eight element cyclic group

has exactly v(8) = 4 generators, none of which is a power of an

element of order 4. Thus, the multiplicative group F3[B]* = F9

is cyclically generated by any of the four nonzero matrices in

F3 [B] which are not powers of B. The reader can easily verify

that the matrix M = I + B = 1 is a cyclic generator of F9 .

Note that the set F3 [B] is spanned (over F3 ) by the

matrices I and B, and also by I and M. That is, F3 [B]

L(I, B) = L(I, M). If B and M are the ordered bases (I, B)

and (I, M), respectively, we see that

r
LB : -* B2 = 0- + l"B so [LBIB 0 2 B,

LB B B2 = 2-1+ -B BBi 0]B

I M = l-I 1-B [i 2 ,LMso [LM]1B  =M,
B - MB = 21 + 1B 11

and

5



1 M = 01+1M r0 1,

LM M so ELMIM A.
M I + 2-M []

Since A is similar to M, it follows that A is another

cyclic generator of F9. Moreover, A is the companion matrix

of its characteristic polynomial fA(X) = x2 + x + 2. We call A

a canonical cyclic generator of F9 , and call the representation

F3 [A] {O, I, A, A2 , A3 , A4 , A5 , A6 , A7 1

a canonical cyclic representation of F9 .

THE GENERAL CASE

Of course, all of these ideas generalize for arbitrary

finite fields. (Indeed, they generalize to finite extensions of

any field, but we restrict the treatment here to finite

extensions of fields Fp with p prime.) Let p be a prime

number and let q = Pe be the eth power of p. Then Fq is a

q element field containing Fp = Zp = Z/(p) (the integers

modulo p) as its prime field. Let m(x) be any irreducible

polynomial of degree e over Fp, and let B be the companion

matrix of m(x). The ring Fp[B] of sums of powers of B is

isomorphic to the field F., and is thus a matrix representation

of Fq. Locate a matrix M in Fp[B] which has period

(multiplicative order) q - 1. M is necessarily a cyclic

generator of Fq. The companion matrix A of the minimum

polynomial mM(x) = mA(x) is a canonical cyclic generator of

Fp[A] = {O, I, A, A2, .... Aq-2} Fq.

6



Note that if C is any e x e matrix over Fp, then the

ring Fp[C) generated by C is isomorphic to Fq if and only

if the sequence C = (I, C, C2 , ... , Ce-i) of powers of C is

independent if and only if the characteristic polynomial fc(x)

of C is irreducible. In this case, the matrix [Lc]C of l-ft

multiplication by C, with respect to the basis C, is the com-

panion matrix of fc(x). C is a cyclic generator of Fq if and

only if C is a primitive (q - i)st root of unity in Fp[C].

CYCLOTOMIC POLYNOMIALS

There is another, possibly easier, method of getting a

canonical cyclic generator of Fq. Recall that the nth

cyclotomic polynomial cn(x) is defined to be the product

(5) cn(x) T T (x - a)

taken over all w(n) primitive nth roots a of unity. Since

every root of xn - 1 = 0 is a primitive dth root of unity for

some divisor d of n, it follows from (5) that

(6) Xn - 1 TT Cd(X).

din

One can use (6) to obtain the recursive formula

(7) cn(x) (xn - 1) / dT cd(x)

din&d(n

It follows inductively from (7) that cn(x) is a monic
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polynomial with integer coefficients of degree (from (5)) w(n).

The cyclotomic polynomials are all irreducible over the rational

number field (See [3, p. 61, Thm. 2.4.7], [4, p. 162], or [5,

p. 289, Thm. 6.3.13],.), but they usually factor over finite

fields. It will be useful later to note that if n = rd is a

power of a prime r, then it follows inductively from (7) that

(8) cn(x) = (xn - l)/(xn/r - 1), (n = rd, r prime).

Every element of Fq (p prime and q = pe) is a root of

(9) xq - x = X(x q - 1 - 1) =0,

since Fq is the splitting field of xq - x, and every nonzero

element is a (q - l)st root of unity. If m(x) is a monic

irreducible factor of cqil(x), and a is a root of m(x), then

a is a primitive (q - 1)st root of unity. (Note that m(x) is

necessarily of degree e.) It follows that if A is the e x e

companion matrice of m(x), then A is a canonical cyclic

generator of Fq.

Conversely, if A is a canonical cyclic generator of Fq

over Fp, then its minimum polynomial mA(x) is an irreducible

factor of the cyclotomic polynomial cq.l(x) in Fp[x]. This

observation can lead to a method of factoring cyclotomic polyno-

mials. This is a related but different topic which we will not

pursue here.

EXAMPLES REVISITED

Let us conclude with two examples that use the method of
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factoring cyclotomic polynomials to obtain canonical cyclic

representations of F8 over F2 , and of F9 over F3. (We

have treated these cases more naively above.)

For F8  over F2 , e : [F8 :F2 ] = 3, so the factors of c7 (x)

are cubic.

c 7 (x) = (x7 - l)/(x - 1)

= X 6 + x 5 + x 4 + x+ + x + 1

= (x 3 + x + 1)(x 3 + x 2 + 1).

(The factorization of c7 (x) was particularly easy, since it-

factors are the only irreducible polynomials of degree three over

F2 !) Since x3 + x ' 1 and x3 + x2 + 1 are irreducible

factors of c7 (x), it follows that their companion matrices

~00 11 ~001 1
A 1 0 I and B I 0 01

t0 1 0 0 1 1

are canonical cyclic generators of F8 over F2 .

For F9 over F3 , we would like to factor

c 8 (x) = (x 8 - 1)/(x 4 - 1) = x 4 + .

Since e = [F9 :F3 ] = 2, the factors are quadratic. It is not

hard to see that the monic irreducible quadratics over F3 are

x2  1 1, x2 - x - 1, and x2 + x - 1. The desired factorization

is

c 8 (x) 
4 + (x 2 + x - 1)(x 2 - x - 1),

so the canonical cyclic generators of F9  over F3  are the
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corresponding companion matrices,

A = and B [ t
12 11

CONCLUSION

As mentioned in the introduction, finite fields have many

applications to coding theory, information theory, and crypto-

graphy. The canonical cyclic matrix representation of finite

fields described in this report gives an easily understandable

and convenient computational method of dealing with finite fields

that can simplify their use in these applications.
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